article thumbnail

Leveraging Linguistic Expertise in NLP: A Deep Dive into RELIES and Its Impact on Large Language Models

Marktechpost

With the significant advancement in the fields of Artificial Intelligence (AI) and Natural Language Processing (NLP), Large Language Models (LLMs) like GPT have gained attention for producing fluent text without explicitly built grammar or semantic modules.

article thumbnail

Innovation in Synthetic Data Generation: Building Foundation Models for Specific Languages

Unite.AI

Synthetic data , artificially generated to mimic real data, plays a crucial role in various applications, including machine learning , data analysis , testing, and privacy protection. However, generating synthetic data for NLP is non-trivial, demanding high linguistic knowledge, creativity, and diversity.

NLP 173
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Advancing Cantonese NLP: Bridging Development Gaps in Large Language Models with New Benchmarks and Open-Source Innovations

Marktechpost

Large language models (LLMs) have revolutionized natural language processing (NLP), particularly for English and other data-rich languages. The scarcity of training data and benchmarks for Cantonese LLMs further complicates development efforts.

article thumbnail

Brown University Researchers Propose LexC-Gen: A New Artificial Intelligence Method that Generates Low-Resource-Language Classification Task Data at Scale

Marktechpost

Data scarcity in low-resource languages can be mitigated using word-to-word translations from high-resource languages. However, bilingual lexicons typically need more overlap with task data, leading to inadequate translation coverage. Check out the Paper.

article thumbnail

This AI Paper from Cohere for AI Presents a Comprehensive Study on Multilingual Preference Optimization

Marktechpost

Multilingual natural language processing (NLP) is a rapidly advancing field that aims to develop language models capable of understanding & generating text in multiple languages. One of the main issues in multilingual NLP is the predominant focus on a few major languages, such as English and Chinese.

article thumbnail

This AI Paper Proposes a Novel Bayesian Deep Learning Model with Kernel Dropout Designed to Enhance the Reliability of Predictions in Medical Text Classification Tasks

Marktechpost

This scarcity challenges the AI’s ability to learn effectively and deliver reliable results, which is critical when these outcomes directly affect patient care. Advanced NLP techniques improve Electronic Health Records management, facilitating the extraction of valuable information.

article thumbnail

Meet AnomalyGPT: A Novel IAD Approach Based on Large Vision-Language Models (LVLM) to Detect Industrial Anomalies

Marktechpost

On various Natural Language Processing (NLP) tasks, Large Language Models (LLMs) such as GPT-3.5 They optimize the LVLM using synthesized anomalous visual-textual data and incorporating IAD expertise. Direct training using IAD data, however, needs to be improved. Data scarcity is the first.