article thumbnail

The “Zero-Shot” Mirage: How Data Scarcity Limits Multimodal AI

Marktechpost

Don’t Forget to join our 40k+ ML SubReddit The post The “Zero-Shot” Mirage: How Data Scarcity Limits Multimodal AI appeared first on MarkTechPost. Join our Telegram Channel , Discord Channel , and LinkedIn Gr oup. If you like our work, you will love our newsletter.

article thumbnail

Meet LP-MusicCaps: A Tag-to-Pseudo Caption Generation Approach with Large Language Models to Address the Data Scarcity Issue in Automatic Music Captioning

Marktechpost

The post Meet LP-MusicCaps: A Tag-to-Pseudo Caption Generation Approach with Large Language Models to Address the Data Scarcity Issue in Automatic Music Captioning appeared first on MarkTechPost.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Boosting Classification Accuracy: Integrating Transfer Learning and Data Augmentation for Enhanced Machine Learning Performance

Marktechpost

Together, these techniques mitigate the issues of limited target data, improving the model’s adaptability and accuracy. A recent paper published by a Chinese research team proposes a novel approach to combat data scarcity in classification tasks within target domains. Check out the Paper.

article thumbnail

Open Artificial Knowledge (OAK) Dataset: A Large-Scale Resource for AI Research Derived from Wikipedia’s Main Categories

Marktechpost

However, acquiring such datasets presents significant challenges, including data scarcity, privacy concerns, and high data collection and annotation costs. Artificial (synthetic) data has emerged as a promising solution to these challenges, offering a way to generate data that mimics real-world patterns and characteristics.

article thumbnail

UC Berkeley Research Presents a Machine Learning System that Can Forecast at Near Human Levels

Marktechpost

However, judgmental forecasting has introduced a nuanced approach, leveraging human intuition, domain knowledge, and diverse information sources to predict future events under data scarcity and uncertainty. The challenge in predictive forecasting lies in its inherent complexity and the limitations of existing methodologies.

article thumbnail

Meet Swin3D++: An Enhanced AI Architecture based on Swin3D for Efficient Pretraining on Multi-Source 3D Point Clouds

Marktechpost

However, the scarcity and limited annotation of 3D data present significant challenges for the development and impact of 3D pretraining. One straightforward solution to address the data scarcity issue is to merge multiple existing 3D datasets and employ the combined data for universal 3D backbone pretraining.

article thumbnail

Hypernetworks for Personalizing ASR to Atypical Speech

Machine Learning Research at Apple

Even given this knowledge, data scarcity and high inter/intra-speaker variability further limit the effectiveness of traditional fine-tuning. However, these approaches assume a priori knowledge of the atypical speech disorder being adapted for -- the diagnosis of which requires expert knowledge that is not always available.